
Dynamic Learnware Filtering for Efficient Learnware
Identification and System Slimming

Jian-Dong Liu

National Key Laboratory for Novel

Software Technology,

School of Artificial Intelligence,

Nanjing University

Nanjing, China

liujd@lamda.nju.edu.cn

Zhi-Hao Tan

National Key Laboratory for Novel

Software Technology,

School of Artificial Intelligence,

Nanjing University

Nanjing, China

tanzh@lamda.nju.edu.cn

Zhi-Hua Zhou
∗

National Key Laboratory for Novel

Software Technology,

School of Artificial Intelligence,

Nanjing University

Nanjing, China

zhouzh@lamda.nju.edu.cn

Abstract
The learnware paradigm proposed by Zhou [34] aims to solve

machine learning tasks by leveraging numerous existing high-

performing models instead of training from scratch. These models

are accommodated in a learnware dock system, where each learn-

ware consists of a model and a specification that characterizes the

model’s utility, enabling it to be identified for future tasks. A critical

challenge in this paradigm remains unresolved: determining what

models can be or should be admitted to the system. Without well-

established admission criteria, the uncontrolled growth of uploaded

models could lead to significant redundancy and inefficiency, re-

sulting in higher storage overhead, increased computational costs,

and even potential system failure. To address this gap, this paper

presents the first attempt to establish learnware admission criteria

and dynamically filter redundant learnwares based on model ca-

pability coverage. Specifically, we organize task information from

all learnwares into a tree-based structure to assess model capabili-

ties across a continuously expanding task set. Using this structure

and model capability representation, we develop an efficient and

scalable method for detecting redundant learnwares dynamically

without traversing the entire system. Theoretical analysis and exten-

sive experiments involving over ten thousand simulated learnwares

validate the efficacy and efficiency of our approach.

CCS Concepts
• Computing methodologies→Machine learning; • Informa-
tion systems→ Information systems applications.

Keywords
Machine Learning, Learnware, Learnware Dock System, Learnware

Specification, Dynamic Learnware Filtering, System Slimming

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1454-2/25/08

https://doi.org/10.1145/3711896.3736917

ACM Reference Format:
Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou. 2025. Dynamic Learnware

Filtering for Efficient Learnware Identification and System Slimming. In

Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3736917

1 Introduction
The learnware paradigm [34, 35] was proposed to enable users

to solve new tasks by reusing existing models instead of starting

from scratch. "Learnware = Model + Specification", i.e., a learn-

ware consists of a well-performing model of any structure and a

specification that captures the model’s utility and characteristics,

such as its statistical properties. Developers worldwide can submit

models trained on various tasks to a learnware dock system, which

helps generate specifications at developer side to form learnwares;

briefly speaking, the learnware dock system will send some "key"

information, such as a mathematical function and the size of the

specification, to the developer. Then, based on this information and

the raw training data, the developer will generate the specifica-

tion to submit together with the model, without disclosing the raw

training data to the learnware dock system. When faced with a new

user task, where the user submits her request like a specification,

the system automatically identifies and assembles helpful learn-

wares with the help of specifications. The user can then apply these

learnwares directly or refine them with her own data to address

the task. Importantly, the system does not access the raw data of

either model developers or users.

The learnware paradigm offers substantial advantages in ad-

dressing common machine learning challenges. It empowers users

to achieve high-quality models by leveraging pre-existing, well-

performing learnwares, even if they possess limited data or machine

learning expertise, thereby streamlining the model development

process. This paradigm inherently supports continual learning and

prevents catastrophic forgetting, as the learnware dock system’s

capability is constantly enriched with new model submissions from

diverse tasks, allowing the system to evolve and improve over time.

Furthermore, the paradigm is designed to protect data privacy as

neither model developers nor users need to disclose their raw data

to the learnware dock system or to each other. Recent research

has significantly advanced this framework. Notably, the reduced

kernel mean embedding (RKME) specification [35] is proposed to

identify learnwares by matching their original data distributions

with user tasks, which has been demonstrated effective in various

1811

https://doi.org/10.1145/3711896.3736917
https://doi.org/10.1145/3711896.3736917
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736917&domain=pdf&date_stamp=2025-08-03

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

7

Model Specification

Existing Learnwares

Model Specification

Submit

New Learnwares
Model Specification

Dynamic Learnware Filtering Module

Learnware Dock System

“Reject” Submit Submit“Reject” ① “Admit”

② Identify Existing Learnwares Redundant Due to the New One

③ Admit the New Learnware and Remove the Redundant Ones (If Any)

Updated Learnwares

Figure 1: The workflow of dynamic learnware filtering.

tasks [25, 28] and is theoretically proven to protect developers’ raw

data [15]. Building on this, subsequent research has extended to ef-

ficient identification [16, 29], heterogeneous feature spaces [23, 24],

and heterogeneous label spaces [10]. Based on the above works,

the first learnware dock system, Beimingwu [25], was recently

released, serving as a research platform and providing implemen-

tations for the entire process of learnware paradigm, with further

work extending its application to language models [26].

To realize the vision depicted above, a critical problem in the

learnware paradigm is determining what models can be or should
be admitted to the learnware dock system. Imagine that thousands

to millions of models will be shared by developers for future reuse.

Admitting models unrestrictedly could result in numerous redun-

dant models, significantly increasing storage and computational

costs for management and retrieval. This slows response times,

increases latency, and reduces throughput, ultimately impairing

system performance and potentially causing system failure. Fur-

thermore, malicious attackers could submit excessive redundant

models to exhaust system resources, leading to a denial-of-service

attack. Given the recent establishment of Beimingwu system [25],

addressing this problem has become even more urgent.

Although this issue is crucial, it remains unexplored in existing

learnware literature. Moreover, it presents several key fundamental

challenges. First, detecting redundant learnwares requires char-

acterizing capability differences between models, which is quite

non-trivial due to the inherent intricacy of model functional spaces

and the inaccessibility of raw data. Second, even when models

differ, they may still be redundant; the lack of a clear definition

of redundant learnwares further complicates this problem. Third,

filtering redundant learnwares is an inherently dynamic process, as

previously admitted learnwares may become redundant due to the

system’s continuous expansion with newly submitted learnwares.

Furthermore, this dynamic filtering process must be both efficient

and scalable to handle the growing number of learnwares submitted

by developers worldwide.

To address these challenges, our key insight is to characterize

model capabilities across a continuously expanding and structured

set of tasks and establish criteria for filtering redundant learnwares

based on capability coverage. Specifically, the RKME specification

incorporates the original task information of each model, enabling

us to structurally organize task information from existing learn-

wares for evaluating model capabilities without accessing raw data.

As the task set grows with the continuous expansion of the learn-

ware dock system, this evolving evaluation of model capabilities

will become increasingly accurate and comprehensive. Using this

capability representation, we can establish criteria for dynamically

filtering redundant learnwares by comparing their capabilities and

identifying those already covered by existing learnwares, as shown

in Figure 1. Our main contributions are summarized as follows:

• We present the first attempt to establish learnware admission

criteria and dynamically filter redundant learnwares from the

perspective of model capability coverage, without accessing

original data. Our proposed approach reduces system storage

overhead, enhances system management and search efficiency,

while also defending against malicious attacks involving ex-

cessive uploads of redundant learnwares.

• To ensure efficiency and scalability of our approach, we struc-

turally organize task information from all learnwares into an

RKME cover tree, enabling model capability evaluation across

a continuously expanding task set. Based on this structure, we

propose an efficient method for dynamically filtering redun-

dant learnwares without traversing the entire system.

• Theoretical analysis, extensive experiments with over ten thou-

sand models across real-world scenarios, and an ablation study

validate the effectiveness and efficiency of our approach in

reducing system size and improving identification efficiency

while preserving system performance.

2 Preliminary
As the specification plays a central role in the learnware paradigm,

this section introduces the recently proposed reduced kernel mean

embedding (RKME) specification [35], which has shown its efficacy

in several learnware studies [16, 23, 28] by concisely representing

the model’s training data distribution with kernel methods.

We begin by introducing the kernel mean embedding (KME) [22],

which maps a probability distribution to a point in reproducing

kernel Hilbert space (RKHS) and effectively captures distribution

information. For a distribution D over X and a kernel function

𝑘 : X × X ↦→ R with RKHS H𝑘 , the KME is defined as 𝜇D =∫
X 𝑘 (𝒙, ·)dD(𝒙), which is approximated by the empirical KME

𝜇D = 1

𝑚

∑𝑚
𝑖=1 𝑘 (𝒙𝑖 , ·) in practice, where the samples {𝒙𝑖 }𝑚𝑖=1 are

drawn i.i.d. from D. Under mild conditions, 𝜇D converges to 𝜇D
at a rate of 𝑂 (1/

√
𝑚), measured by the RKHS norm ∥ · ∥H𝑘

[22].

While KME requires access to raw data, which conflicts with

the principle of data privacy in the learnware paradigm, the RKME

specification is proposed to retain the advantages of KME while

protecting data privacy. Specifically, the RKME specification serves

as a reduced set {(𝛽 𝑗 ∈ R, 𝒛 𝑗 ∈ X)}𝑛𝑗=1, which approximates the

empirical KME 𝜇D by solving:

min

𝜷,𝒛

 1𝑚 ∑︁𝑚

𝑖=1
𝑘 (𝒙𝑖 , ·) −

∑︁𝑛

𝑗=1
𝛽 𝑗𝑘 (𝒛 𝑗 , ·)

2
H𝑘

, (1)

in an alternating optimization manner [28], with the RKME 𝜇̃D =∑𝑛
𝑗=1 𝛽 𝑗𝑘 (𝒛 𝑗 , ·) converging to 𝜇D at rate𝑂 (1/

√
𝑛) [1, 33]. Moreover,

this specification is proven to scarcely contain any original data and

possesses robust defense against common inference attacks [15].

1812

Dynamic Learnware Filtering for Efficient Learnware Identification and System Slimming KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

3 Problem Formulation
This work focuses on dynamically detecting whether a model

should be admitted and retained by the learnware dock system,

primarily centering on the submitting stage of the learnware par-

adigm. At this stage, developers worldwide continuously submit

their well-performing models along with corresponding RKME

specifications. Assume there are 𝑁 existing learnwares in the sys-

tem. The developer of the 𝑖-th learnware has access to a private

local dataset 𝐷𝑖 = (𝑿𝑖 ,𝒚𝑖), where instances are sampled from a

distribution D𝑖 over the input space X, and labels are determined

by a ground-truth function ℎ ∈ F = {𝑓 | 𝑓 : X ↦→ Y}, i.e.,

∀(𝒙, 𝑦) ∈ 𝐷𝑖 , 𝒙 ∼ D𝑖 , 𝑦 = ℎ(𝒙).

Using the local dataset 𝐷𝑖 , the developer trains a high-performing

model 𝑓𝑖 ∈ F that satisfies the following property:

LD𝑖
(𝑓𝑖 , ℎ) = E𝒙∼D𝑖

[ℓ (𝑓𝑖 (𝒙), ℎ(𝒙))] ≤ 𝜀, (2)

where ℓ : Y×Y ↦→ R is a symmetric loss function. To approximate

the 𝑖-th task without exposing raw data, an RKME specification

𝑅𝑖 = (𝜷𝑖 ∈ Δ𝑛,𝒁𝑖 ∈ X𝑛) is constructed, where Δ𝑛 denotes the

𝑛-dimensional simplex. The developer then submits the learnware

(𝑓𝑖 , 𝑅𝑖) to the learnware dock system.

Given 𝑁 existing learnwares S = {(𝑓𝑖 , 𝑅𝑖)}𝑁𝑖=1 in the system,

the task is to determine whether a new learnware (𝑓new, 𝑅new)
should be admitted. If admitted, the system is required to identify

any existing learnwares that become redundant due to the new

learnware and filter them out.

4 Proposed Approach
To detect whether a learnware is redundant and should not be ad-

mitted or retained by the system, a straightforward approach is to

compare its training tasks with those of other learnwares. However,

since machine learning models are essentially functions in a func-

tional space, their true capabilities extend beyond their training

tasks, leading to inaccurate detection results. To improve detection

accuracy, we propose dynamically evaluating a learnware’s capa-

bilities on a continuously expanding set of tasks. Inspired by the

evolvable learnware specification [16], this can be achieved by utiliz-

ing the task information within RKME specifications from existing

learnwares. Considering a new learnware (𝑓new, 𝑅new) and a task

set {D𝑖 }𝑁𝑖=1 derived from existing learnwares, the generalization

error of the model 𝑓new on the 𝑖-th task is defined as follows:

LD𝑖
(𝑓new, ℎ) = E𝒙∼D𝑖

[ℓ (𝑓new (𝒙), ℎ(𝒙))] .

Since the original distribution D𝑖 and the ground-truth function ℎ

are inaccessible, we approximate them using the RKME specifica-

tion 𝑅𝑖 = (𝜷𝑖 ,𝒁𝑖) and the high-performing model 𝑓𝑖 , respectively.

To estimate the generalization error, we then use the empirical loss

on the RKME specification 𝑅𝑖 , defined as follows:

L̃𝑅𝑖 (𝑓new, 𝑓𝑖) =
∑︁𝑛

𝑗=1
𝛽𝑖, 𝑗 ℓ (𝑓new (𝒛𝑖, 𝑗), 𝑓𝑖 (𝒛𝑖, 𝑗)) .

The difference between L̃𝑅𝑖 (𝑓new, 𝑓𝑖) and LD𝑖
(𝑓new, ℎ) is bounded

by the following theorem, with the proof provided in Appendix B.1.

Theorem 4.1. Assume sup𝒙∈X 𝑘 (𝒙, 𝒙) < ∞ and that the loss func-
tion ℓ satisfies the triangle inequality. Let ℓ𝑓 ,𝑓 ′ : 𝒙 ↦→ ℓ (𝑓 (𝒙), 𝑓 ′ (𝒙)),

and assume ∥ℓ𝑓 ,𝑓 ′ ∥H𝑘
is uniformly bounded for all 𝑓 , 𝑓 ′ ∈ F . Then,

with probability at least 1 − 𝛿 (𝛿 ∈ (0, 1)), for all 𝑓 ∈ F , we have:���LD𝑖
(𝑓 , ℎ) − L̃𝑅𝑖 (𝑓 , 𝑓𝑖)

��� = O (
𝜀 +𝑚−

1

2 + 𝑛−
1

2

)
,

where 𝜀 is defined in Eq. (2), with𝑚 and 𝑛 representing the sizes of
the training dataset 𝐷𝑖 and RKME specification 𝑅𝑖 , respectively.

Based on above approximation, for any model 𝑓 , we can leverage

numerous existing learnwares S = {(𝑓𝑖 , 𝑅𝑖)}𝑁𝑖=1 to determine the

task set that 𝑓 excels at, as follows:

I𝑓 (S) =
{
𝑅𝑖 | L̃𝑅𝑖 (𝑓 , 𝑓𝑖) ≤ 𝜉, (𝑓𝑖 , 𝑅𝑖) ∈ S

}
,

where 𝜉 is a performance threshold. With the continuous expansion

ofS (i.e., the learnware dock system continuously scales up), I𝑓 (S)
offers an increasingly precise characterization for the capabilities

of model 𝑓 . Using this representation, we establish the admission

criteria for identifying redundant learnwares.

Criteria 4.2. Given existing learnwaresS = {(𝑓𝑖 , 𝑅𝑖)}𝑁𝑖=1 and a per-
formance threshold 𝜉 , a new learnware (𝑓new, 𝑅new) is considered
redundant and should be rejected if some (𝑓𝑖 , 𝑅𝑖) ∈ S satisfies:

I𝑓new (S) ⊆ I𝑓𝑖 (S), (3)

∀𝑅 ∈ I𝑓new (S) ∪ {𝑅new}, L̃𝑅 (𝑓new, 𝑓𝑖) ≤ 𝜉 . (4)

The first condition in Eq. (3) states that the capabilities of 𝑓new
are covered by an existing learnware, as 𝑓𝑖 excels at all tasks in

S that 𝑓new masters. Since this condition only focuses on overall

model performance, the two may perform differently on individual

samples. Thus, the second condition in Eq. (4) further ensures that

where 𝑓new performs well, including its original task indicated by

𝑅new, 𝑓𝑖 not only achieves similar performance but also produces

highly consistent outputs, allowing the new learnware (𝑓new, 𝑅new)
to be replaced by the existing learnware. Since the representation

I𝑓 (S) evolves with the expansion of S, the above conditions lead
to increasing detection accuracy as the system scales up.

Although the above criteria are sufficient for detecting redundant

learnwares, the detection process is still challenging:

• A brute-force check for the redundancy of (𝑓new, 𝑅new) re-
quires traversing all existing learnwares. Since assessing the

first condition in Eq. (3) is potentially O(𝑁), the worst-case
time complexity is O(𝑁 2), which is unacceptable.

• If (𝑓new, 𝑅new) is not redundant, we need to identify the ex-

isting learnwares that become redundant due to (𝑓new, 𝑅new).
This process also necessitates traversing all learnwares, with

the same worst-case time complexity of O(𝑁 2).
To address these challenges and avoid traversing all learnwares,

we propose an efficient and scalable approach for dynamically

filtering redundant learnwares. In the following subsections, we

start with the structural organization of learnwares, then introduce

the dynamic filtering method for redundant learnwares. For clarity,

the primary notations used are summarized in Appendix A.

4.1 Structural Organization of Learnwares
For efficient filtering of redundant learnwares, it is crucial to com-

pute I𝑓 (S) efficiently without traversing the entire system. To

achieve this, our key observation is that for any model 𝑓 , the differ-

ence between L̃𝑅𝑖 (𝑓 , 𝑓𝑖) and L̃𝑅 𝑗
(𝑓 , 𝑓𝑗) is related to the distance

1813

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

Algorithm 1: RKME Cover Tree Insertion

Input: RKME cover tree T (R), a new RKME specification 𝑝 .

Output: The updated tree T (R ∪ {𝑝}).
1 Function Insert(tree T (R), node 𝑝):
2 Let 𝑟 be the root of T (R) and set 𝑖 ← max𝑞∈R\{𝑟 } 𝑙 (𝑞);
3 if _Insert(𝑖 , {𝑟 }, T (R), 𝑝) = False then
4 Set 𝑙 (𝑝) ← ⌈log

2
𝑑H𝑘
(𝑝, 𝑟)⌉ − 1;

5 Insert 𝑝 into Children(𝑟);
6 Set 𝑙 (𝑟) ← max(𝑙 (𝑟), 𝑙 (𝑝) + 1);
7 end
8 return The updated tree T (R ∪ {𝑝})
9 end

10 Function _Insert(level 𝑖 , node set 𝑄 , tree T (R), node 𝑝):
11 if 𝑖 < min𝑞∈R 𝑙 (𝑞) or 𝑄 = ∅ then return False;

12 𝑉 ← ∪𝑞∈𝑄 {𝑎 ∈ Children(𝑞) | 𝑙 (𝑎) = 𝑖};
13 𝑄𝑖 ← {𝑎 ∈ (𝑉 ∪𝑄) | 𝑑H𝑘

(𝑎, 𝑝) ≤ 2
𝑖+1};

14 Set next level 𝑡 ← max𝑎∈𝑄𝑖
Next(𝑎, 𝑖);

15 if _Insert(𝑡 , 𝑄𝑖 , T (R), 𝑝) = False then
16 if min𝑞∈𝑄 𝑑H𝑘

(𝑝, 𝑞) > 2
𝑖 then return False;

17 Pick 𝑣 ∈ 𝑄𝑖 minimizing 𝑑H𝑘
(𝑝, 𝑞);

18 Set 𝑙 (𝑝) ← ⌈log
2
𝑑H𝑘
(𝑝, 𝑣)⌉ − 1;

19 Insert 𝑝 into Children(𝑣);
20 end
21 return True

22 end

between the specifications 𝑅𝑖 and 𝑅 𝑗 . Let 𝜇̃D𝑖
denote the 𝑖-th RKME

for the specification 𝑅𝑖 , defined as

𝜇̃D𝑖
=
∑︁𝑛

𝑗=1
𝛽𝑖, 𝑗𝑘 (𝒛𝑖, 𝑗 , ·).

The distance metric between any two RKME specifications, 𝑅𝑖 and

𝑅 𝑗 , is derived within the associated RKHSH𝑘 as follows:

𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗) =

𝜇̃D𝑖
− 𝜇̃D𝑗

H𝑘

.

Utilizing this distancemetric, we formalize the relationship between

the loss difference and the specification distance in the following

theorem, with the proof provided in Appendix B.2.

Proposition 4.3. With the assumptions from Theorem 4.1, let (𝑓𝑖 , 𝑅𝑖)
and (𝑓𝑗 , 𝑅 𝑗) be two learnwares. Then, for all 𝑓 ∈ F , we have:���L̃𝑅𝑖 (𝑓 , 𝑓𝑖) − L̃𝑅 𝑗

(𝑓 , 𝑓𝑗)
��� = OP (

𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗) + 𝜂

)
,

where 𝜂 = 𝜀 +𝑚−
1

2 + 𝑛−
1

2 with 𝜀,𝑚, 𝑛 defined in Theorem 4.1.

Proposition 4.3 indicates that the difference in loss can be approxi-

mately represented by the specification distance𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗). Specif-

ically, when L̃𝑅𝑖 (𝑓 , 𝑓𝑖) is computed, we can estimate that L̃𝑅 𝑗
(𝑓 , 𝑓𝑗)

lies within the interval [L̃𝑅𝑖 (𝑓 , 𝑓𝑖) −𝑤 ·𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗), L̃𝑅𝑖 (𝑓 , 𝑓𝑖) +𝑤 ·

𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗)], where𝑤 is a weighting constant. If the left endpoint

of this interval exceeds the performance threshold 𝜉 , the compu-

tation for L̃𝑅 𝑗
(𝑓 , 𝑓𝑗) can be skipped, thereby avoiding the need to

traverse all learnwares and accelerating the calculation of I𝑓 (S).
RKME Cover Tree. Based on the above observation, we pro-

pose hierarchically organizing learnwares using the distance metric

Algorithm 2: Calculation of the task set I𝑓 (S)
Input: RKME cover tree T (R), a model 𝑓 , constants 𝜉,𝑤 .

Output: The task set I𝑓 (S) that 𝑓 excels at.
1 Let 𝑟 be the root of T (R) and set 𝑄 ← {𝑟 },I𝑓 ← ∅;
2 while 𝑄 ≠ ∅ do
3 Pick 𝑝 ∈ 𝑄 and set 𝑄 ← 𝑄 \ {𝑝};
4 Let (𝑓𝑝 , 𝑅𝑝) be the learnware associated with the node 𝑝 ;

5 if L̃𝑅𝑝
(𝑓 , 𝑓𝑝) ≤ 𝜉 then I𝑓 ← I𝑓 ∪ {𝑅𝑝 };

6 if L̃𝑅𝑝
(𝑓 , 𝑓𝑝) −𝑤 · Covdist(𝑝) ≤ 𝜉 then

7 Set 𝑄 ← 𝑄 ∪ Children(𝑝);
8 end
9 end

10 return The resulting task set I𝑓 (S)

of RKMEs, which enables efficient calculation of I𝑓 (S) without
traversing the entire system. Specifically, we construct an RKME

cover tree defined in Definition 4.4, leveraging the compressed

cover tree [2, 9] as the underlying data structure.

Definition 4.4 (RKME Cover Tree). Let R be a set of RKME spec-

ifications. An RKME cover tree T (R) has a one-to-one mapping

between R and all nodes of T (R), with a level function 𝑙 : R ↦→ Z
satisfying the following conditions:

• (Root) The root node 𝑟 satisfies 𝑙 (𝑟) ≥ 1 +max𝑝∈R\{𝑟 } 𝑙 (𝑝).
• (Covering) Every node 𝑞 ∈ R \ {𝑟 } has a unique parent 𝑝 such

that the distance 𝑑H𝑘
(𝑞, 𝑝) ≤ 2

𝑙 (𝑞)+1
and 𝑙 (𝑞) < 𝑙 (𝑝).

• (Separation) For 𝑖 ∈ Z, the set𝐶𝑖 = {𝑝 ∈ R | 𝑙 (𝑝) ≥ 𝑖} satisfies
that for any distinct 𝑝, 𝑞 ∈ 𝐶𝑖 , 𝑑H𝑘

(𝑝, 𝑞) ≥ 2
𝑖
.

For any node 𝑝 ∈ T (R), let Children(𝑝) and Descendants(𝑝) de-
note the set of children and descendants of 𝑝 , respectively, and

define the function Covdist(𝑝) = max𝑞∈Descendants(𝑝) 𝑑H𝑘
(𝑝, 𝑞).

Importantly, the RKME cover tree T (R) supports online con-
struction, allowing for the streaming addition of new nodes to the

tree. This property is particularly beneficial for learnware dock

systems where learnwares are uploaded in a streaming manner. To

explain the insertion process, we define additional notations below.

Definition 4.5 (Children(𝑝, 𝑖) and Next(𝑝, 𝑖)). In an RKME cover

treeT (R), for a node 𝑝 ∈ R and level 𝑖 , define Children(𝑝, 𝑖) = {𝑎 ∈
Children(𝑝) | 𝑙 (𝑎) = 𝑖}. Let Next(𝑝, 𝑖) be the largest level in the set

{ 𝑗 < 𝑖 | Children(𝑝, 𝑗) ≠ ∅}; if it is empty, set Next(𝑝, 𝑖) = −∞.

Based on these definitions, the online construction of the RKME

cover tree is presented in Algorithm 1, where the updated tree

remains a valid RKME cover tree in Definition 4.4 and the time com-

plexity of this process is O(log |R |) with a hidden dimensionality

factor. The proofs of these statements are essentially the same as

those for the original compressed cover tree [9].

Using the RKME cover tree, the task set I𝑓 (S) can be obtained

through Algorithm 2, enabling efficient computation without ex-

amining all tasks in the system. Since the value of Covdist(𝑝) for
each node 𝑝 ∈ T (R) can be efficiently precomputed and updated

during the insertion process of new nodes, the key operation in

line 6 of Algorithm 2 can be executed directly.

1814

Dynamic Learnware Filtering for Efficient Learnware Identification and System Slimming KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

4.2 Dynamic Learnware Filtering
Since learnwares are uploaded continuously, our dynamic filtering

method is executed upon the arrival of each new learnware. The

process involves three steps: (1) check if the new learnware is

redundant and reject it if so; (2) if not redundant, identify any

existing learnware that becomes redundant due to the new one; (3)

admit the new learnware and update the relevant data structures.

RedundancyDetection for New Learnwares. For a new learn-

ware (𝑓new, 𝑅new), we initially compute the task set I𝑓new (S) us-
ing Algorithm 2, where the learnware setS is defined in Criteria 4.2.

Subsequently, we need to identify existing learnwares whose task

sets are supersets of I𝑓new (S), defined as:

M =
{
𝑓𝑖 | I𝑓new (S) ⊆ I𝑓𝑖 (S), (𝑓𝑖 , 𝑅𝑖) ∈ S

}
. (5)

Since verifying whether I𝑓new (S) is a subset of I𝑓𝑖 (S) incurs a
worst-case time complexity of O(𝑁), iterating over all learnwares

to computeM results in a total time complexity of O(𝑁 2), which
is impractical. To accelerate the computation ofM, we propose

assigning a model setU𝑅 (S) to each specification 𝑅 of the RKME

cover tree T (R) during its online construction. This set represents

the existing models that excel at the task specified by 𝑅, defined as:

U𝑅 (S) =
{
𝑓𝑖 | 𝑅 ∈ I𝑓𝑖 (S), (𝑓𝑖 , 𝑅𝑖) ∈ S

}
.

In this context,U𝑅 (S) functions as an inverted index set for I𝑓 (S),
establishing a dual relationship between the two sets. Moreover, the

model setU𝑅 (S) can be efficiently updated during the computation

of I𝑓 (S) in line 5 of Algorithm 2, with total storage overhead

consistent with that required for I𝑓 (S). By leveraging the model

setU𝑅 (S),M in Eq. (5) can be efficiently computed as:

M′ =
⋂

𝑅∈I𝑓new (S)
U𝑅 (S) . (6)

Every element 𝑓𝑖 inM′ satisfies the conditions ofM in Eq. (5), and

the reverse also holds, leading to the following proposition:

Proposition 4.6. The model setM′, defined in Eq. (6), is equivalent
to the setM, as given in Eq. (5).

Since U𝑅 (S) is precomputed for all 𝑅 ∈ I𝑓new (S), and the set

intersection has a worst-case time complexity of O(𝑁), we have:

Proposition 4.7. The worst-case time complexity of computingM′,
as expressed in Eq. (6), is O(|I𝑓new (S)|𝑁).

Given that the number of tasks that a model excels at is typically

small, i.e., |I𝑓new (S)| ≪ 𝑁 , the time complexity of computingM′
in Eq. (6) is practical and significantly more efficient than the brute-

force computation described in Eq. (5).

IfM′ is empty, the new learnware (𝑓new, 𝑅new) is not redun-
dant and should be admitted. Otherwise, we check if any model

𝑓𝑖 ∈ M′ satisfies the second condition in Eq. (4). If such a model

exists, the new learnware is rejected; otherwise, it is admitted. The

worst-case time complexity of verifying the second condition is

O(|I𝑓new (S)| · |M′ |+ |M′ |). Since |M′ | ≤ 𝑁 , the overall worst-case

time complexity for this detection remains O(|I𝑓new (S)|𝑁).
A special case arises when I𝑓new (S) = ∅, makingM the set of all

models in S. In this case, the task reduces to checking if any model

inM performs well on 𝑅new, which is equivalent to determining

Algorithm 3: Dynamic Learnware Filtering

Input: Existing learnwares S, RKME cover tree T (R), a
new learnware (𝑓new, 𝑅new).

Output: “Admit” if the new learnware is admitted,

“Reject” otherwise.

1 Compute the task set I𝑓new (S) using Algorithm 2;

2 if I𝑓new (S) ≠ ∅ then
3 Calculate the model setM′ using Eq. (6);
4 if ∃𝑓𝑖 ∈ M′ satisfying Eq. (4) then return “Reject”;

5 else
6 SetM ← ⋃

𝑅∈KNN(𝑅new) U𝑅 (S) via 𝑘-NN search [9];

7 CalculateU𝑅new
(M) according to Eq. (7);

8 if U𝑅new (M) ≠ ∅ then return “Reject”;

9 end
10 Calculate the model setV′ based on I𝑓new (S) using Eq. (9);

11 for existing model 𝑓𝑖 ∈ V′ do
12 if 𝑓𝑖 satisfies Eq. (10) then Filter out 𝑓𝑖 from the system;

13 end
14 Insert 𝑅new into the RKME cover tree T (R) via Algorithm 1;

15 Set S ← S ∪ {(𝑓new, 𝑅new)} and update corresponding task

sets I𝑓 (S) and model setsU𝑅 (S);
16 return “Admit”

whetherU𝑅new
(M) is empty, where:

U𝑅new
(M) =

{
𝑓𝑖 | L̃𝑅new

(𝑓𝑖 , 𝑓new) ≤ 𝜉, 𝑓𝑖 ∈ M
}
, (7)

with 𝜉 being the threshold in Criteria 4.2. To computeU𝑅new
(M)

efficiently without traversing all learnwares, we narrowM via the

RKME cover tree T (R). Based on Proposition 4.3, models perform-

ing well on 𝑅new likely excel on nearby RKMEs. Thus, we apply

a 𝑘-nearest neighbor search algorithm [9] to find the 𝐾 closest

RKMEs KNN(𝑅new), with time complexity O((𝐾 + log |R |) log𝐾).
Finally,M is approximated as the union of their model sets, i.e.,⋃

𝑅∈KNN(𝑅new) U𝑅 (S), enabling efficient calculation.

Detecting Existing Redundant Learnwares. If the new learn-

ware (𝑓new, 𝑅new) is not redundant, we must determine whether

any existing learnware becomes redundant due to the new one. To

do so, we identify existing learnwares whose task sets are subsets

of the new learnware’s set I𝑓new (S), i.e.,

V =
{
𝑓𝑖 | I𝑓𝑖 (S) ⊆ I𝑓new (S), (𝑓𝑖 , 𝑅𝑖) ∈ S

}
. (8)

To efficiently obtainV without traversing all learnwares, we reuse

the inverted index setU𝑅 (S). Specifically, let Count(𝑓) denote the
number of tasks in I𝑓new (S) where model 𝑓 excels, defined as:

Count(𝑓) =
��{𝑅 ∈ I𝑓new (S) | 𝑓 ∈ U𝑅 (S)

}�� .
The model setV can then be efficiently computed as:

V′ =
{
𝑓𝑖 ∈

⋃
𝑅∈I𝑓new (S)

U𝑅 (S) | Count(𝑓𝑖) = |I𝑓𝑖 (S)|
}
. (9)

Since Count(𝑓𝑖) = |I𝑓𝑖 (S)| implies I𝑓𝑖 (S) ⊆ I𝑓new (S), each 𝑓𝑖 ∈
V′ satisfies the conditions ofV in Eq. (8), and vice versa, as stated

in the following proposition:

1815

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

60

80

100

Ra
tio

 (%
)

Diabetes

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

60

80

100
HAR70+

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

70

80

90

100
Covertype

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

60

70

80

90

100
Air-Quality

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

60

70

80

90

100
PPG-DaLiA

200 500 800 1.1k 1.4k 1.7k 2k
Learnware Count

40

60

80

100
M5

Ratio of Best Identification Performance (Ours / NoFilter) Ratio of System Size (Ours / NoFilter)

Figure 2: For each scenario, the best identification performance is the minimum loss on the user task among all learnwares in
the system, while system size is the total number of accommodated learnwares. The figure shows the ratio (%) of these two
metrics under our approach relative to the baseline, as the number of uploaded learnwares continuously increases up to 2,000.

Proposition 4.8. The model setV′, defined in Eq. (9), is equivalent
to the setV , as given in Eq. (8).

While |I𝑓𝑖 (S)| is precomputed, Count(𝑓) and the model set

V′ can be computed concurrently based on the multiset union⊎
𝑅∈I𝑓new (S) U𝑅 (S). Since the worst-case time complexity of the

multiset union operation is O(𝑁), the following proposition holds:

Proposition 4.9. The worst-case time complexity of computingV′,
as expressed in Eq. (9), is O(|I𝑓new (S)|𝑁).

The time complexity of computingV′ matches that ofM′, as
both efficiently avoid traversing all learnwares. For each 𝑓𝑖 ∈ V′,
we then determine whether it can be replaced by the new one

(𝑓new, 𝑅new) by verifying the following condition:

∀𝑅 ∈ I𝑓𝑖 (S), L̃𝑅 (𝑓new, 𝑓𝑖) ≤ 𝜉, (10)

with 𝜉 defined in Criteria 4.2. If satisfied, the existing learnware 𝑓𝑖
is redundant and removed from the system; otherwise, it is retained.

Since |I𝑓𝑖 (S)| ≤ |I𝑓new (S)|, the time complexity of this process is

O(|I𝑓new (S)| · |V′ |). Thus, the overall time complexity of detecting

redundant existing learnwares remains O(|I𝑓new (S)|𝑁), consistent
with that of detecting redundant new learnwares.

Admitting Learnwares and Updating Data Structures. If
the new learnware (𝑓new, 𝑅new) is not redundant, it is admitted and

𝑅new is inserted into the RKME cover tree T (R) using Algorithm 1.

Let S′ = S ∪ {(𝑓new, 𝑅new)}, I𝑓new (S′) = I𝑓new (S) ∪ {𝑅new} and
U𝑅new

(S′) = U𝑅new
(M) ∪ {𝑓new}, whereU𝑅new

(M) is computed

as described in line 6-7 of Algorithm 3. Other task sets I𝑓 (S′) and
model setsU𝑅 (S′) are updated accordingly. Since |U𝑅new

(S′) | and
|I𝑓new (S′) | are smaller than |S′ |, the worst-case time complexity

for updating the data structures is O(𝑁), which remains efficient

and has a minor impact on the overall computational cost of our

approach. The complete process of dynamic learnware filtering for

redundant learnwares is summarized in Algorithm 3.

5 Experiments
5.1 Experimental Setup
Here we introduce the experimental setup for scenario construction,

evaluation of learnware identification, and configurations. More de-

tails on settings and additional results are provided in Appendix C.

Scenario Construction. In our experiments, we develop over

10,000 models of various types, covering diverse real-world classi-

fication and regression tasks. These scenarios are associated with

six real-world datasets: Diabetes [6], HAR70+ [27], Covertype [3],

Air-Quality [31], PPG-DaLiA [20], and M5 [17]. The datasets span

a variety of tasks: Diabetes, HAR70+, and Covertype classify dia-

betes health indicators, human activities, and forest cover types,

respectively, while Air-Quality, PPG-DaLiA, and M5 predict air pol-

lutants, heart rate, and product sales, respectively. These datasets

vary significantly in size, with the number of instances ranging

from 288,840 to 46 million, and the number of features ranging from

6 to 64. Additionally, each dataset is naturally divided into multi-

ple parts based on categorical attributes, and each part is further

subdivided into training and test sets. For instance, the M5 dataset

is split into 70 parts, each corresponding to different stores and

departments. To construct scenarios with numerous learnwares, we

develop 2,000 models for each dataset by repeating the following

process. Specifically, for each dataset with 𝐶 parts, we first ran-

domly select an integer𝑀 from the range [1,𝐶/2], then randomly

choose 𝑀 parts from the 𝐶 parts. Using the corresponding training

data, we randomly select one of three model types, namely Random

Forest [4], XGBoost [7], and LightGBM [14], and train the model

by randomly selecting hyperparameters from a predefined set.

Evaluation of Learnware Identification. To investigate the

impact of learnware admission management on identification per-

formance, we construct 100 user tasks for each dataset by repeating

the following procedure. For each dataset with 𝐶 parts, we ran-

domly select 𝑀 ∈ [1,𝐶/2] parts in a manner similar to the above

model generation process, and the user task consists of the corre-

sponding test data for the selected parts. For each scenario with

𝑇 user tasks, we evaluate the system’s performance by computing

the average loss across all tasks, i.e.,

∑𝑇
𝑖=1 loss𝑖/𝑇 , where loss𝑖 is

the loss of identified models on the 𝑖-th user task. We use error

rate and root-mean-square error (RMSE) as the loss functions for

classification and regression tasks, respectively. It is important to

note that the test instances of each user task are unseen by all

previously developed learnwares.

Configurations. For the generation of RKME specifications, we

set the specification size 𝑛 = 100 and employ the Gaussian kernel

𝑘 (𝒙1, 𝒙2) = exp(−𝛾 ∥𝒙1 − 𝒙2∥2) with 𝛾 = 0.1.

5.2 Evaluating the Effectiveness and Impact of
Dynamic Learnware Filtering

Here, we evaluate our approach from multiple perspectives, in-

cluding its impact on best identification performance, system size,

and some learnware identification methods. To standardize these

1816

Dynamic Learnware Filtering for Efficient Learnware Identification and System Slimming KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

200 1000 2000
Learnware Count

24

26

28

210

212

Ex
ec

ut
io

n
Ti

m
e

(s
) Diabetes

200 1000 2000
Learnware Count

22

24

26

28

210
HAR70+

200 1000 2000
Learnware Count

22

24

26

28

210
Covertype

200 1000 2000
Learnware Count

22

24

26

28

210
Air-Quality

200 1000 2000
Learnware Count

22

24

26

28

210
PPG-DaLiA

200 1000 2000
Learnware Count

23

25

27

29

211

M5
RKME-task (Ours) RKME-task (NoFilter) RKME-instance (Ours) RKME-instance (NoFilter)

Figure 3: Comparison of identification efficiency between our approach and the baseline NoFilter for two representative
learnware identification methods, with the number of uploaded learnwares ranging from 200 to 2,000 in each scenario.

Table 1: Ratio (%) of the two metrics (best identification per-
formance and system size) ofmethods to those of the baseline
NoFilter. As the learnware count increases up to 2,000, the
results are presented as the mean and standard deviation.
The best results of size reduction are emphasized in bold.

Scenario

CheckRKME / NoFilter Ours / NoFilter

Best Perf. System Size Best Perf. System Size

Diabetes 100.03 ± 0.04 95.60 ± 1.34 100.79 ± 0.12 55.99 ± 5.90

HAR70+ 103.19 ± 1.34 73.05 ± 9.48 100.64 ± 0.24 47.27 ± 5.38

Covertype 100.04 ± 0.10 99.37 ± 0.56 100.30 ± 0.12 72.09 ± 5.87

Air-Quality 100.33 ± 0.10 85.63 ± 5.09 100.35 ± 0.11 68.99 ± 6.71

PPG-DaLiA 100.58 ± 0.37 95.29 ± 2.57 100.68 ± 0.12 64.00 ± 1.68

M5 100.00 ± 0.01 99.11 ± 0.43 100.35 ± 0.37 71.64 ± 13.81

Table 2: Ratio (%) of identification performance for two learn-
ware identification methods (Ours /NoFilter). The results are
presented for learnware counts ranging from 200 to 2,000.

Scenario

RKME-task RKME-instance

200 1,000 2,000 200 1,000 2,000

Diabetes 99.98 101.67 101.09 100.48 102.65 101.04

HAR70+ 101.05 104.79 103.90 100.02 100.41 104.32

Covertype 86.01 93.40 96.11 89.85 95.51 94.50

Air-Quality 97.76 100.34 100.52 96.77 98.57 100.31

PPG-DaLiA 98.86 102.07 102.14 99.16 97.12 97.95

M5 88.67 108.92 109.97 87.21 106.92 108.56

Mean 95.39 101.87 102.29 95.58 100.19 101.11

diverse metrics, we introduce the baseline method NoFilter, which
admits all learnwares without any examination. For each metric,

we then compute a relative ratio by dividing the metric’s value by

the corresponding baseline value. For example, the ratio of system

size (Ours / NoFilter) indicates the system size of our approach

compared to the baseline method.

Impact on Best Performance and System Size. For each user

task, the best identification performance is defined as the minimum

loss among all existing learnwares, representing the best possible

performance of the system. Since the best identification perfor-

mance typically improves as system size increases, we compare

these two metrics side by side, with the number of uploaded learn-

wares continuously increasing up to 2,000. As illustrated in Figure 2,

compared with the baseline NoFilter, our approach consistently

and significantly reduces system size (an average size reduction

of 27.91% to 52.73% across different scenarios) while maintaining

nearly the same best identification performance (an average ratio

of 100.30% to 100.79%). These results demonstrate the effectiveness

of our approach in reducing system size while maintaining the best

possible performance of the system.

Furthermore, a question may arise: Is the significant reduction

in system size due to the presence of many learnwares with identi-

cal training tasks? To further validate our approach, we introduce

a competitive method, CheckRKME, which identifies redundant

learnwares whose RKME specifications are similar to those of exist-

ing learnwares. Table 1 presents the comparison results, indicating

that our approach significantly outperforms CheckRKME in reduc-

ing system size, while both methods maintain similar best identifi-

cation performance compared to NoFilter. Since CheckRKME can

only eliminate learnwares trained on similar tasks, these results

further demonstrate that our approach offers a precise characteri-

zation of model capabilities and can detect redundant learnwares

even when their original tasks differ from those of existing ones.

Impact on Learnware Identification Methods. We further

evaluate the impact of our approach on two representative learn-

ware identification methods in terms of both identification per-

formance and efficiency. Specifically, RKME-task [28] and RKME-
instance [28], are designed to identify single and multiple learn-

wares, respectively, using RKME specifications. Table 2 presents the

ratio of our approach to NoFilter in terms of the loss on user tasks

for both identification methods, with the average ratio ranging

from 95.39% to 102.29%. A ratio below 100% indicates improved

identification performance, while a ratio above 100% suggests a

slight decline. The results demonstrate that our approach does not

significantly affect the efficacy of these representative methods and

even improves their identification performance in many scenarios.

For learnware identification efficiency, we compare the total ex-

ecution time of the two learnware identification methods using our

approach and the baseline NoFilter in Figure 3. The results indicate

that our approach significantly reduces the total execution time

for both methods, with the average time reduction ranging from

32.34% to 52.95% for RKME-task and from 26.28% to 46.37% for

RKME-instance across different scenarios. These findings demon-

strate that our approach significantly improves the efficiency of

learnware identification while maintaining or even enhancing the

identification performance of these representative methods.

5.3 Practical System-Level Validation in
Heterogeneous Feature Spaces

While the previous section demonstrated our dynamic filtering

mechanism’s effectiveness, it is crucial to validate its practical ad-

vantages for the learnware dock system, especially in more complex,

1817

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

Table 3: Average RMSE loss and total average time (s) for solving a single user task on heterogeneous user tasks (10-2000 labeled
samples). Mean ± Std. Dev. (over 3 repetitions). Beimingwu* denotes the method with our proposed dynamic filtering.

Method 10 50 100 200 500 1000 2000

RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s)

LightGBM 4.60 0.07 4.18 0.15 3.94 0.50 3.72 0.54 3.31 1.13 3.08 2.73 2.94 4.03

(Std Dev) (0.52) (0.01) (0.61) (0.02) (0.57) (0.33) (0.58) (0.18) (0.46) (0.35) (0.41) (1.57) (0.35) (0.77)

TabPFN v2 3.88 27.53 3.52 31.51 3.29 77.10 3.21 86.80 2.97 146.15 2.94 168.96 3.05 165.98

(Std Dev) (0.47) (0.04) (0.53) (3.17) (0.44) (5.82) (0.60) (10.16) (0.42) (15.31) (0.46) (27.77) (0.47) (3.57)

Beimingwu 3.40 1.39 3.29 1.42 2.80 1.21 3.02 1.24 2.67 1.37 2.61 1.58 2.57 1.31

(Std Dev) (0.30) (0.41) (0.19) (0.46) (0.29) (0.39) (0.69) (0.45) (0.35) (0.49) (0.37) (0.46) (0.38) (0.49)

Beimingwu* 3.40 1.22 3.30 1.11 2.84 1.13 3.02 1.14 2.69 1.30 2.61 1.28 2.57 1.19
(Std Dev) (0.30) (0.41) (0.19) (0.46) (0.31) (0.39) (0.69) (0.45) (0.33) (0.49) (0.37) (0.46) (0.38) (0.49)

real-world-like scenarios. Therefore, we adopt an established test

scenario from the Beimingwu [25] system, which focuses on het-

erogeneous feature spaces. This scenario contains 265 learnwares

spanning five distinct feature spaces, derived from two represen-

tative sales forecasting datasets: PFS [13] and Corporacion [12].

For evaluation, we use three different feature engineering methods

for ten stores in the M5 [17] dataset, creating 30 user tasks, whose

feature spaces differ from those of the learnwares. We then compare

the performance of the learnware dock system (Beimingwu [25],

incorporating our dynamic filtering mechanism) against strong

non-learnware baselines, LightGBM [14] and TabPFN v2 [11].

System Slimming and Identification Efficiency. The key

benefits enabled by our dynamic filtering approach are system slim-

ming and identification efficiency. In this heterogeneous scenario,

applying our filtering reduced the system size from 265 models

to 166, achieving a significant 37.36% reduction in storage needs.

This slimming, in turn, decreased the average single search time

from 0.39 ± 0.08 seconds to 0.25 ± 0.02 seconds, a 35.75% improve-

ment in search efficiency. These results underscore the effectiveness

of our approach in managing diverse model systems by reducing

redundancy and improving responsiveness.

Predictive Performance. We evaluate predictive performance

using average RMSE loss across user tasks, varying user labeled data

from 10 to 2,000 samples. The results, presented in Table 3, demon-

strate that the learnware dock system (Beimingwu) consistently

outperforms the LightGBM and TabPFN v2 baselines across limited

labeled data scenarios. Crucially, our dynamic filtering method (in-

dicated by Beimingwu*) successfully maintains this high level of

system performance while achieving system slimming.

Runtime Efficiency. Practical deployment demands efficient

task solving alongside good performance. We measure the total

time taken (in seconds) by each method to address a single user task

(results in Table 3). The learnware approach (Beimingwu*) exhibits

remarkable time efficiency, significantly outperforming TabPFN v2,

which has high prediction overhead on large user tasks (approx.

100k points each). While LightGBM’s runtime notably increases

with more training data, our method offers comparable, consistent

efficiency and strong predictive performance.

These combined findings highlight that the learnware paradigm,

supported by effective system management like our dynamic filter-

ing, can offer practical advantages in performance, efficiency, and

scalability, especially within limited labeled data scenarios.

Diabetes HAR70+ Covertype Air-Quality PPG-DaLiA M580

85

90

95

100

105

Ra
tio

 o
f B

es
t P

er
f.

(%
)

Ours / NoFilter VanillaOurs / NoFilter

Figure 4: Ablation study on the impact of acceleration tech-
niques on the best identification performance.

5.4 Ablation Study
To further investigate the impact of the efficient and scalablemethod

proposed in Sections 4.1 and 4.2, we conduct an ablation study by

comparing the performance and efficiency of our approachwith and

without these acceleration techniques. Specifically, we introduce

VanillaOurs as a variant of our approach that detects redundant

learnwares through a brute-force check of Criteria 4.2, without

leveraging the structural organization of learnwares.

Impact on Performance and System Size. While our acceler-

ation techniques enable efficient detection of redundant learnwares

without traversing all existing ones, potentially introducing approx-

imation errors, we assess their impact on the best identification

performance and system size. As shown in Figure 4, the best iden-

tification performance of Ours is nearly identical to VanillaOurs,
with both maintaining a ratio close to 100% relative to NoFilter.
Meanwhile, Figure 5 reveals that the growth rate of system size

in Ours aligns with or falls below VanillaOurs in most scenarios,

exhibiting only marginal increases in limited cases while remaining

significantly lower than NoFilter. These findings demonstrate that

the impact on performance and system size induced by acceleration

mechanisms remains constrained within our approach.

Effect of Acceleration on Efficiency.We further assess the ef-

ficiency of our approach, with and without acceleration techniques,

in terms of cumulative runtime as the number of uploaded learn-

wares increases to 2,000. As shown in Figure 6, these acceleration

techniques significantly improve the efficiency of our approach,

achieving speedups ranging from 2.2× to 18.9× over VanillaOurs
across different scenarios. These results validate the effectiveness

of our acceleration techniques in enhancing the efficiency of learn-

ware admission management while maintaining the performance

of detecting redundant learnwares.

1818

Dynamic Learnware Filtering for Efficient Learnware Identification and System Slimming KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k

Sy
st

em
 S

ize

Diabetes
Ours
VanillaOurs
NoFilter

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k HAR70+
Ours
VanillaOurs
NoFilter

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k Covertype
Ours
VanillaOurs
NoFilter

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k Air-Quality
Ours
VanillaOurs
NoFilter

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k PPG-DaLiA
Ours
VanillaOurs
NoFilter

0 500 1k 1.5k 2k
Learnware Count

500

1k

1.5k

2k M5
Ours
VanillaOurs
NoFilter

Figure 5: Ablation study on the impact of acceleration techniques on system size as the number of uploaded learnwares
continuously increases up to 2,000 in each scenario. NoFilter is included as a baseline for comparison.

0 500 1k 1.5k 2k
Learnware Count

1

2

3

Cu
m

ul
at

iv
e

Ti
m

e
(s

) ×104 Diabetes
Ours: 5.4x Speedup
VanillaOurs

0 500 1k 1.5k 2k
Learnware Count

2

4

6

8
×104 HAR70+

Ours: 18.9x Speedup
VanillaOurs

0 500 1k 1.5k 2k
Learnware Count

0.5

1.0

1.5
×105 Covertype

Ours: 8.6x Speedup
VanillaOurs

0 500 1k 1.5k 2k
Learnware Count

0.5

1.0

1.5
×105 Air-Quality

Ours: 5.5x Speedup
VanillaOurs

0 500 1k 1.5k 2k
Learnware Count

0.5

1.0

1.5

2.0
×104 PPG-DaLiA

Ours: 3.8x Speedup
VanillaOurs

0 500 1k 1.5k 2k
Learnware Count

2

4

6

×104 M5
Ours: 2.2x Speedup
VanillaOurs

Figure 6: Ablation study of accelerated vs. non-accelerated methods: Runtime efficiency with learnware count up to 2,000.

6 Related Work
Recently, model pools and hubs have experienced substantial growth,

with the Hugging Face platform notably hosting over a million mod-

els. As envisioned by the learnware paradigm, with the growing

number of models from various tasks, effective model admission

criteria, management, and identification become increasingly im-

portant and challenging. These model pools generally operate as

Git-based remote hosting services, admitting models without re-

strictions on their capabilities and managing them similar to code

repositories, with semantic descriptions capturing model informa-

tion. Within this context of model selection from large model repos-

itories, some works such as HuggingGPT [21] and ToolLLM [19]

propose using popular large language models (LLMs) [5] to identify

helpful models or tools based on their natural language descrip-

tions on the platform, without characterizing model capabilities

from statistical perspectives. Other studies assess the reusability or

transferability of pre-trained models without fine-tuning [8, 30, 32].

Such approaches, which typically require running all candidate pre-

trained models on user data, ignore data privacy and are impractical

in real-world scenarios involving numerous models.

Note that the learnware paradigm [34] was proposed much ear-

lier than the appearance of these model pools. Actually, these model

pools can be regarded as a naive realization of a learnware dock

system, where the learnware specification is realized as language

descriptions. Furthermore, the learnware paradigm has designs for

protecting the original training data of developers or users, and

provides possibilities for assembling multiple models to serve users;

particularly, some tasks that have not been considered by exist-

ing models can be addressed by assembling existing models in the

learnware paradigm. More profoundly, the learnware paradigm

utilizes statistical specifications, e.g., the RKME specification [35],

to characterize the intrinsic capabilities of models. This enables

a learnware dock system, such as the Beimingwu
1
platform [25],

1
https://github.com/Learnware-LAMDA

to effectively identify and reuse high-performing models for user

tasks without accessing user raw data or exhaustively evaluating

every candidate model, achieving active management of accom-

modated models rather than passive hosting. As these learnware

dock systems expand, the effective model admission criteria become

crucial for sustained system efficiency and scalability. This work

specifically targets this issue, introducing a method for dynamic

learnware filtering based on model capability coverage to achieve

system slimming and improve learnware identification efficiency.

7 Conclusion
This paper presents the first attempt to establish learnware admis-

sion criteria and dynamically filter redundant learnwares from the

perspective of model capability coverage. To achieve this, we struc-

turally organize task information from all learnwares into an RKME

cover tree, enabling the evaluation of model capabilities across a

continuously expanding task set. Building on this structure and

capability representation, we propose a method that is both efficient

and scalable for filtering redundant learnwares dynamically, with-

out requiring traversal of the entire system. The effectiveness and

efficiency of our approach are validated through theoretical analy-

sis, extensive experiments involving over ten thousand simulated

models across various real-world scenarios, and an ablation study.

Our approach lays a crucial foundation for the practical realization

of large-scale, sustainable learnware dock systems, significantly en-

hancing their long-term viability and utility. Future research could

extend this work by investigating adaptive filtering thresholds.

Acknowledgments
This research was supported by National Natural Science Founda-

tion of China (62250069) and the Collaborative Innovation Center

of Novel Software Technology and Industrialization. The authors

would like to thank Peng Tan, Jia-Wei Shan, and Hai-Tian Liu for

helpful discussions. We are also grateful to the anonymous review-

ers for their helpful comments.

1819

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

References
[1] Francis R. Bach, Simon Lacoste-Julien, and Guillaume Obozinski. 2012. On the

equivalence between herding and conditional gradient algorithms. In Proceedings
of the 29th International Conference on Machine Learning. 1355–1362.

[2] Alina Beygelzimer, Sham M. Kakade, and John Langford. 2006. Cover trees for

nearest neighbor. In Proceedings of the 23rd International Conference on Machine
Learning. 97–104.

[3] Jock A Blackard and Denis J Dean. 1999. Comparative accuracies of artificial

neural networks and discriminant analysis in predicting forest cover types from

cartographic variables. Computers and electronics in agriculture 24, 3 (1999),

131–151.

[4] Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5–32.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In

Advances in Neural Information Processing Systems 33. 1877–1901.
[6] Nilka Rios Burrows, Israel Hora, Linda S. Geiss, Edward W. Gregg, and Ann

Albright. 2017. Incidence of end-stage renal disease attributed to diabetes among

persons with diagnosed diabetes—United States and Puerto Rico, 2000–2014.

MMWR. Morbidity and Mortality Weekly Report 66 (2017), 1165–1170.
[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 785–794.

[8] Yao-Xiang Ding, Xi-Zhu Wu, Kun Zhou, and Zhi-Hua Zhou. 2022. Pre-Trained

model reusability evaluation for small-data transfer learning. In Advances in
Neural Information Processing Systems 35. 37389–37400.

[9] Yury Elkin and Vitaliy Kurlin. 2023. A new near-linear time algorithm for k-

nearest neighbor search using a compressed cover tree. In Proceedings of the 40th
International Conference on Machine Learning. 9267–9311.

[10] Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li, and Zhi-Hua Zhou. 2023. Identifying useful

learnwares for heterogeneous label spaces. In Proceedings of the 40th International
Conference on Machine Learning. 12122–12131.

[11] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max

Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter. 2025. Accurate

predictions on small data with a tabular foundation model. Nature 637, 8044
(2025), 319–326.

[12] Kaggle. 2017. Corporación favorita grocery sales forecasting. https://www.kaggle.

com/c/favorita-grocery-sales-forecasting. Accessed: 2025-04-15.

[13] Kaggle. 2018. Predict future sales. https://kaggle.com/competitions/competitive-

data-science-predict-future-sales. Accessed: 2025-04-15.

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting

decision tree. InAdvances in Neural Information Processing Systems 30. 3146–3154.
[15] Hao-Yi Lei, Zhi-Hao Tan, and Zhi-Hua Zhou. 2024. On the ability of develop-

ers’ training data preservation of learnware. In Advances in Neural Information
Processing Systems 37. 36471–36513.

[16] Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou. 2024. Towardsmaking learnware

specification and market evolvable. In Proceedings of the 38th AAAI Conference
on Artificial Intelligence. 13909–13917.

[17] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2022. The

M5 competition: Background, organization, and implementation. International
Journal of Forecasting 38, 4 (2022), 1325–1336.

[18] Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, and Bernhard

Schölkopf. 2017. Kernel mean embedding of distributions: A review and beyond.

Foundations and Trends in Machine Learning 10, 1-2 (2017), 1–141.

[19] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin

Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing

Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2024.

ToolLLM: Facilitating large language models to master 16000+ real-world APIs.

In Proceedings of the 12th International Conference on Learning Representations.
[20] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. 2019.

Deep PPG: Large-scale heart rate estimation with convolutional neural networks.

Sensors 19, 14 (2019), 3079.
[21] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting

Zhuang. 2023. HuggingGPT: Solving AI tasks with ChatGPT and its friends in

Hugging Face. In Advances in Neural Information Processing Systems 36. 38154–
38180.

[22] Alexander J. Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. 2007. A

Hilbert space embedding for distributions. In Proceedings of the 18th International
Conference on Algorithmic Learning Theory. 13–31.

[23] Peng Tan, Hai-Tian Liu, Zhi-Hao Tan, and Zhi-Hua Zhou. 2024. Handling learn-

wares from heterogeneous feature spaces with explicit label exploitation. In

Advances in Neural Information Processing Systems 37. 12767–12795.
[24] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. 2023. Handling learn-

wares developed from heterogeneous feature spaces without auxiliary data. In

Proceedings of the 32nd International Joint Conference on Artificial Intelligence.
4235–4243.

[25] Zhi-Hao Tan, Jian-Dong Liu, Xiao-Dong Bi, Peng Tan, Qin-Cheng Zheng, Hai-

Tian Liu, Yi Xie, Xiao-Chuan Zou, Yang Yu, and Zhi-Hua Zhou. 2024. Beimingwu:

A learnware dock system. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 5773–5782.

[26] Zhi-Hao Tan, Zi-Chen Zhao, Hao-Yu Shi, Xin-Yu Zhang, Peng Tan, Yang Yu, and

Zhi-Hua Zhou. 2025. Learnware of language models: Specialized small language

models can do big. arXiv:2505.13425

[27] Astrid Ustad, Aleksej Logacjov, Stine Øverengen Trollebø, Pernille Thingstad,

Beatrix Vereijken, Kerstin Bach, and Nina Skjæret-Maroni. 2023. Validation of

an activity type recognition model classifying daily physical behavior in older

adults: The HAR70+ model. Sensors 23, 5 (2023), 2368.
[28] Xi-Zhu Wu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. 2023. Model reuse with

reduced kernel mean embedding specification. IEEE Transactions on Knowledge
and Data Engineering 35, 1 (2023), 699–710.

[29] Yi Xie, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. 2023. Identifying helpful

learnwares without examining the whole market. In Proceedings of the 26th
European Conference on Artificial Intelligence. 2752–2759.

[30] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. 2021. LogME:

Practical assessment of pre-trained models for transfer learning. In Proceedings
of the 38th International Conference on Machine Learning. 12133–12143.

[31] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen.

2017. Cautionary tales on air-quality improvement in Beijing. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 473, 2205 (2017),
20170457.

[32] Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye.

2023. Model spider: Learning to rank pre-trained models efficiently. In Advances
in Neural Information Processing Systems. 13692–13719.

[33] Yu-Jie Zhang, Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. 2021. Towards enabling

learnware to handle unseen jobs. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence. 10964–10972.

[34] Zhi-Hua Zhou. 2016. Learnware: on the future of machine learning. Frontiers of
Computer Science 10, 4 (2016), 589–590.

[35] Zhi-Hua Zhou and Zhi-Hao Tan. 2024. Learnware: Small models do big. Science
China Information Sciences 67, 1 (2024), 112102.

1820

https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://kaggle.com/competitions/competitive-data-science-predict-future-sales
https://kaggle.com/competitions/competitive-data-science-predict-future-sales
https://arxiv.org/abs/2505.13425

Dynamic Learnware Filtering for Efficient Learnware Identification and System Slimming KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Supplementary Materials
In the appendix, we first summarize the primary notations used in

this work. Next, we provide the proofs of theoretical results and

include the additional experimental details and results.

A Notations
The major notations used in this work are summarized in Table 4.

Table 4: Major notations used in this work.

Category Notation Description

Developer

D𝑖 The original training distribution of the 𝑖-th

developer over the input space X.
𝐷𝑖 := (𝑿𝑖 ,𝒚𝑖) The local dataset of the 𝑖-th developer, sam-

pled from the distribution D𝑖 .

(𝑓𝑖 , 𝑅𝑖) The 𝑖-th learnware, where 𝑓𝑖 is the model

and 𝑅𝑖 is the RKME specification.

𝑚,𝑛 The sizes of the training dataset 𝐷𝑖 and

RKME specification 𝑅𝑖 , respectively.

Loss

LD𝑖
(𝑓 , 𝑓 ′) The expected loss between models 𝑓 and 𝑓 ′

on the distribution D𝑖 .

L̃𝑅𝑖 (𝑓 , 𝑓 ′) The empirical loss between models 𝑓 and 𝑓 ′

on the RKME specification 𝑅𝑖 .

Admission

Criteria

S The set of existing learnwares in the system,

i.e., { (𝑓𝑖 , 𝑅𝑖) }𝑁𝑖=1.
I𝑓 (S) The task set that the model 𝑓 excels at, con-

taining 𝑅𝑖 if L̃𝑅𝑖 (𝑓 , 𝑓𝑖) ≤ 𝜉, (𝑓𝑖 , 𝑅𝑖) ∈ S.

RKME

Cover Tree

𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗) The distance metric between any two RKME

specifications, derived within the RKHS H𝑘 .

T(R) The RKME cover tree built on the set of

RKME specifications R.
𝑙 : R ↦→ Z The level function that maps each RKME

specification to its level in the cover tree.

Children(𝑝) The set of children nodes of the node 𝑝 in

the RKME cover tree T(R) .
Next(𝑝, 𝑖) The largest level 𝑗 such that 𝑗 < 𝑖 and the

node 𝑝 has children at level 𝑗 .

Covdist(𝑝) The maximum distance between the node 𝑝

and its descendants in the RKME cover tree.

Learnware

Filtering

M /M′ The set of model 𝑓𝑖 whose task set I𝑓𝑖 (S) is
a superset of that of the new model 𝑓new.

U𝑅 (S) The set of model 𝑓𝑖 that excels at the task

indicated by 𝑅, i.e., 𝑅 ∈ I𝑓𝑖 (S) .
V / V′ The set of model 𝑓𝑖 whose task set I𝑓𝑖 (S)

satisfying I𝑓𝑖 (S) ⊆ I𝑓new (S) .

B Proofs
B.1 Proof of Theorem 4.1
To prove Theorem 4.1, we first present several lemmas on the con-

vergence rates of the empirical KME 𝜇D to the KME 𝜇D , and the

RKME 𝜇̃D to the empirical KME 𝜇D , for any task distribution D
over the input space X, as defined in Section 2.

Lemma B.1 (Theorem 3.4 of Muandet et al. [18]). Assuming that
sup𝒙∈X 𝑘 (𝒙, 𝒙) ≤ 𝐵H , with probability at least 1 − 𝛿 , where 𝛿 ∈
(0, 1), the following holds:

∥𝜇D − 𝜇D ∥H𝑘
≤
√︂
𝐵H
𝑚
+

√︄
2𝐵H log

1

𝛿

𝑚
,

where𝑚 denotes the local dataset size.

Lemma B.1 shows that 𝜇D converges to 𝜇D at a rate ofO(1/
√
𝑚).

We then derive the convergence rate of 𝜇̃D to 𝜇D through a con-

structive proof, as presented in Lemma B.2.

Lemma B.2. Assume sup𝒙∈X 𝑘 (𝒙, 𝒙) ≤ 𝐵H . Then, we have:

∥𝜇D − 𝜇̃D ∥H𝑘
≤ 2

√︂
2𝐵H
𝑛

,

where 𝑛 denotes the RKME specification size.

Proof of Lemma B.2. To analyze the convergence rate of 𝜇̃D
to 𝜇D , we apply the kernel herding method [1], which gener-

ates a weighted mimic dataset {(𝛽mic

𝑗
, 𝒛mic

𝑗
)}𝑛

𝑗=1
, where 𝜷mic ∈

Δ𝑛 , to approximate 𝜇D . According to Bach et al. [1], assuming

sup𝒙∈X 𝑘 (𝒙, 𝒙) ≤ 𝐵H , we have:

∥𝜇D − 𝜇̃mic

D ∥H𝑘
≤ 2

√︁
2𝐵H/𝑛,

where 𝜇̃mic

D =
∑𝑛

𝑗=1 𝛽
mic

𝑗
𝑘 (𝒛mic

𝑗
, ·). Since the mimic dataset gener-

ated by the kernel herding algorithm is a suboptimal solution to

the optimization problem for generating the RKME specification,

as shown in Eq. (1), the convergence rate of the RKME 𝜇̃D to the

empirical KME 𝜇D can be bounded as follows:

∥𝜇D − 𝜇̃D ∥H𝑘
≤ ∥𝜇D − 𝜇̃mic

D ∥H𝑘
≤ 2

√︁
2𝐵H/𝑛,

which completes the proof. □

Lemma B.2 presents the convergence rate of the RKME 𝜇̃D to the

empirical KME 𝜇D as O(1/
√
𝑛). Additionally, when the RKHSH𝑘 is

finite-dimensional, the convergence rate improves toO(𝑒−𝑛) [1, 33].
Based on these convergence rates, we now proceed to prove Theo-

rem 4.1, where the subscriptH𝑘 is omitted in ⟨·, ·⟩H𝑘
and ∥ · ∥H𝑘

when it is clear from the context.

Proof of Theorem 4.1. For all 𝑓 ∈ F , we have:
LD𝑖
(𝑓 , ℎ) =

〈
𝜇D𝑖

, ℓ𝑓 ,ℎ
〉
≤
〈
𝜇D𝑖

, ℓ𝑓 ,𝑓𝑖 + ℓ𝑓𝑖 ,ℎ
〉
≤ 𝜀 +

〈
𝜇D𝑖

, ℓ𝑓 ,𝑓𝑖

〉
,

where the first inequality holds due to the assumption that ℓ obeys

the triangle inequality, and the second inequality is due to the fact

that LD𝑖
(𝑓𝑖 , ℎ) =

〈
𝜇D𝑖

, ℓ𝑓𝑖 ,ℎ
〉
≤ 𝜀 in Eq. (2). From this, we have:

LD𝑖
(𝑓 , ℎ) ≤ 𝜀 +

〈
𝜇D𝑖
− 𝜇D𝑖

+ 𝜇D𝑖
− 𝜇̃D𝑖

+ 𝜇̃D𝑖
, ℓ𝑓 ,𝑓𝑖

〉
= 𝜀 +

〈
𝜇D𝑖
− 𝜇D𝑖

+ 𝜇D𝑖
− 𝜇̃D𝑖

, ℓ𝑓 ,𝑓𝑖

〉
+ L̃𝑅𝑖 (𝑓 , 𝑓𝑖)

≤ 𝜀 +

ℓ𝑓 ,𝑓𝑖

 (

𝜇D𝑖

− 𝜇D𝑖

 +

𝜇D𝑖
− 𝜇̃D𝑖

) + L̃𝑅𝑖 (𝑓 , 𝑓𝑖)
≤ 𝜀 + L̃𝑅𝑖 (𝑓 , 𝑓𝑖) + O(1/

√
𝑚 + 1/

√
𝑛), (11)

where Eq. (11) holds by Lemmas B.1 and B.2 and the assumption

that ℓ𝑓 ,𝑓𝑖 is bounded. Then, we prove the other side:

L̃𝑅𝑖 (𝑓 , 𝑓𝑖) =
〈
𝜇̃D𝑖
− 𝜇D𝑖

+ 𝜇D𝑖
− 𝜇D𝑖

+ 𝜇D𝑖
, ℓ𝑓 ,𝑓𝑖

〉
≤

ℓ𝑓 ,𝑓𝑖

 (

𝜇̃D𝑖

− 𝜇D𝑖

 +

𝜇D𝑖
− 𝜇D𝑖

)︸ ︷︷ ︸
(𝐴1)

+
〈
𝜇D𝑖

, ℓ𝑓 ,𝑓𝑖

〉︸ ︷︷ ︸
(𝐴2)

.

Since (𝐴1) = O(1/
√
𝑚 + 1/

√
𝑛) holds in the same manner as Eq.

(11), we derive (𝐴2) as follows:
(𝐴2) ≤

〈
𝜇D𝑖

, ℓ𝑓 ,ℎ + ℓℎ,𝑓𝑖
〉
≤ LD𝑖

(𝑓 , ℎ) + 𝜀,

1821

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou

where the first inequality holds by the triangle inequality of ℓ , and

the second inequality is due to Eq. (2). Thus, we obtain:���LD𝑖
(𝑓 , ℎ) − L̃𝑅𝑖 (𝑓 , 𝑓𝑖)

��� = O (
𝜀 + 1/

√
𝑚 + 1/

√
𝑛

)
,

which completes the proof. □

B.2 Proof of Proposition 4.3
For simplicity, we assume the training datasets 𝐷𝑖 and 𝐷 𝑗 have the

same size𝑚, and the RKME specifications 𝑅𝑖 and 𝑅 𝑗 have the same

size 𝑛. The proof of Proposition 4.3 is then presented as follows,

where the subscriptH𝑘 is omitted in ⟨·, ·⟩H𝑘
and ∥ · ∥H𝑘

when it

is clear from the context.

Proof. With probability at least 1 − 𝛿 , where 𝛿 ∈ (0, 1), for all
𝑓 ∈ F , we have:���L̃𝑅𝑖 (𝑓 , 𝑓𝑖) − L̃𝑅 𝑗

(𝑓 , 𝑓𝑗)
���

≤
���L̃𝑅𝑖 (𝑓 , 𝑓𝑖) − LD𝑖

(𝑓 , ℎ)
��� + ���LD𝑖

(𝑓 , ℎ) − L̃𝑅 𝑗
(𝑓 , 𝑓𝑗)

���
≤
���LD𝑖

(𝑓 , ℎ) − LD𝑗
(𝑓 , ℎ) + LD𝑗

(𝑓 , ℎ) − L̃𝑅 𝑗
(𝑓 , 𝑓𝑗)

��� + O(𝜂)
≤
���LD𝑖

(𝑓 , ℎ) − LD𝑗
(𝑓 , ℎ)

��� + O(𝜂), (12)

where these inequalities hold by Theorem 4.1. Then we derive:���LD𝑖
(𝑓 , ℎ) − LD𝑗

(𝑓 , ℎ)
��� = ���〈𝜇D𝑖

− 𝜇D𝑗
, ℓ𝑓 ,ℎ

〉���
≤

ℓ𝑓 ,ℎ

 ·

𝜇D𝑖

− 𝜇D𝑗

 . (13)

Since ℓ𝑓 ,ℎ is bounded, we derive ∥𝜇D𝑖
− 𝜇D𝑗

∥ as follows:

𝜇D𝑖
− 𝜇D𝑗

 =

(𝜇D𝑖
− 𝜇̃D𝑖

) + (𝜇̃D𝑗
− 𝜇D𝑗

) + (𝜇̃D𝑖
− 𝜇̃D𝑗

)

≤

𝜇D𝑖

− 𝜇̃D𝑖

 +

𝜇̃D𝑗
− 𝜇D𝑗

 +

𝜇̃D𝑖
− 𝜇̃D𝑗

≤ 𝑑H𝑘

(𝑅𝑖 , 𝑅 𝑗) + O(1/
√
𝑚 + 1/

√
𝑛), (14)

where Eq. (14) holds by Lemmas B.1 and B.2. By combining Eq.

(12), Eq. (13), and Eq. (14), we obtain:���L̃𝑅𝑖 (𝑓 , 𝑓𝑖) − L̃𝑅 𝑗
(𝑓 , 𝑓𝑗)

��� = O(𝑑H𝑘
(𝑅𝑖 , 𝑅 𝑗) + 𝜂),

which completes the proof. □

C Additional Experimental Details and Results
This section offers an in-depth look at our experimental setup and

presents supplementary results, further substantiating the findings

from Section 5 and supporting our method’s effectiveness.

C.1 Omitted Details on Settings
The predefined hyperparameter sets for each model type mentioned

in Section 5.1 are presented as follows:

• RandomForest [4]: The hyperparameters including max_depth,
min_samples_split, and min_samples_leaf are randomly

selected from {(15, 2, 1), (8, 5, 2), (7, 4, 2), (10, 10, 5), (12, 8, 4)}.
• XGBoost [7]: The hyperparameters including learning_rate,
max_depth, subsample, and colsample_bytree are randomly

selected from {(0.01, 6, 0.8, 0.8), (0.05, 8, 0.9, 0.7), (0.1, 10, 0.7,
0.9), (0.02, 12, 0.85, 0.75), (0.03, 15, 0.6, 0.6)}.

Table 5: Relative search time (%) ofmethods vs.NoFilter using
identification method RKME-task and RKME-instance.

Scenario

RKME-task RKME-instance

CheckRKME Ours CheckRKME Ours

Diabetes 93.67 61.61 92.45 69.71
HAR70+ 62.04 44.10 74.66 63.74
Covertype 98.66 79.90 80.71 72.90
Air-Quality 76.82 74.66 78.01 75.43
PPG-DaLiA 93.16 67.04 89.57 68.35

M5 98.58 83.06 95.46 85.28
Mean 87.16 68.40 85.14 72.57

Table 6: Ratio (%) of two metrics of our method to those of
NoFilter with varying performance threshold 𝜉 .

(a) HAR70+ classification scenario.

Metric 𝜉 = 0.02 𝜉 = 0.03 𝜉 = 0.04 𝜉 = 0.05 𝜉 = 0.06

Best Perf. 100.26 100.64 101.10 101.15 101.62

System Size 55.23 47.27 41.07 36.52 33.70

(b) PPG-DaLiA regression scenario.

Metric 𝜉 = 8.0 𝜉 = 9.0 𝜉 = 10.0 𝜉 = 11.0 𝜉 = 12.0

Best Perf. 100.76 100.94 100.68 101.15 101.28

System Size 67.87 65.73 64.00 61.61 60.55

• LightGBM [14]: The hyperparameters including num_leaves,
max_depth, and learning_rate are randomly selected from

the predefined set {(31, 5, 0.01), (50, 10, 0.05), (64, 15, 0.1), (40,
12, 0.02), (80, 20, 0.03)}.

For any hyperparameters not explicitly mentioned above, we uti-

lized the default values provided by their respective libraries. These

varying hyperparameters ensure that the models are diverse and

span a wide range of complexities. Note that the test instances for

each user task remain unseen during model training.

C.2 Detailed Runtime Efficiency Comparison
To further illustrate the efficiency advantage of our method, this

section focuses on scenarios with 2,000 uploaded learnwares. At

this scale, as noted in the main text, identification performance is

consistent across methods, making search time a key metric for

efficiency evaluation. Table 4 presents the relative search time (as a

percentage) for CheckRKME and our proposed method compared

to the NoFilter baseline. The data clearly shows that our approach

significantly reduces the required search time, thus validating its

effectiveness in enhancing learnware identification efficiency.

C.3 Analysis of the Parameter Stability
We conduct parameter stability experiments for the performance

threshold 𝜉 in both classification and regression scenarios. As

shown in Table 6, a larger threshold leads to more pronounced

system slimming effects, while the best performance remains rela-

tively stable, demonstrating the stability of and the robustness of

our method. Other hyperparameters, including the RKME specifica-

tion size and kernel parameters, are fixed and reported in Section 5.1,

consistent with related works [16, 23, 25].

1822

	Abstract
	1 Introduction
	2 Preliminary
	3 Problem Formulation
	4 Proposed Approach
	4.1 Structural Organization of Learnwares
	4.2 Dynamic Learnware Filtering

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluating the Effectiveness and Impact of Dynamic Learnware Filtering
	5.3 Practical System-Level Validation in Heterogeneous Feature Spaces
	5.4 Ablation Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Notations
	B Proofs
	B.1 Proof of approach:generalization-error-estimation
	B.2 Proof of approach:loss-with-distance

	C Additional Experimental Details and Results
	C.1 Omitted Details on Settings
	C.2 Detailed Runtime Efficiency Comparison
	C.3 Analysis of the Parameter Stability

